Воскресенье, 24.11.2024, 15:25
Приветствую Вас, Гость
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Программирование графических процессоров Лабораторная 3
engineerklubДата: Вторник, 29.08.2023, 15:52 | Сообщение # 1
Генералиссимус
Группа: Администраторы
Сообщений: 28530
Репутация: 0
Статус: Offline
Программирование графических процессоров Лабораторная 3

Тип работы: Работа Лабораторная
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
Выполнение лабораторной работы поможет получить навыки требующиеся для выполнения третьего задания контрольной работы.
Задание
1. Прочитайте главы теоретического материала под названиями "Pinned memory" и "Потоки (streams) в CUDA". Ответьте на контрольные вопросы в конце глав (ответы на контрольные вопросы не нужно включать в отчёт по лабораторной работе).
2. Примените потоки для алгоритмов реализованные в лабораторной работе №1.
3. Определите оптимальное количество потоков для матрицы размером 2500x2500 элементов и вектора размером 2500 элементов.
Методические указания
Для выполнения лабораторной работы требуется модифицировать код, выполняемый на хосте таким образом, чтобы данные передавались на устройство частями асинхронно, после этого выполнялось функция-ядро над переданной частью, после завершения вычислений часть ответа асинхронно должна копироваться на хост.
На хосте создайте и проинициализируйте матрицу и вектор, которые будут умножаться. Затем выделите память на хосте под результирующий вектор и проинициализируйте его нулями. Выделите память под матрицу и вектора на устройстве, создайте нужное количество потоков (начните с двух потоков).
Теперь нужно определиться какие части данных передавать в каждый поток. Разделение нужно произвести таким образом, чтобы результатом работы функции-ядра была часть конечного результата, не требующая дальнейшей обработки. В таком случае имеет смысл в каждом потоке передавать на устройство часть строк матрицы, а вектор передать сразу полностью, потому что для вычислений, каждой нитью используется одна строка из матрицы и вектор. Результатом работы нити будет один элемент результирующего вектора.
Для того чтобы определить размер порции данных нужно количество строк матрицы поделить на количество потоков, и результат умножить на длину строки. После этого полностью скопируйте значения вектора на устройство. И для каждого потока асинхронно скопируйте часть данных на устройство, используя функцию cudaMemcpyAsync, запустите вычисления над порцией данных, асинхронно скопируйте результат на хост. В конце синхронизируйте все потоки вызовом функции cudaDeviceSynchronize() – эта функция будет ожидать завершения всех запущенных потоков.
Проведите исследование зависимости времени работы алгоритма от количества потоков. Начните с двух потоков и увеличивайте их количество до тех пор, пока время, затраченное на вычисления, не перестанет уменьшаться. Замеры времени следует проводить, включая асинхронные пересылки данных.

СКАЧАТЬ
 
  • Страница 1 из 1
  • 1
Поиск:

Рейтинг@Mail.ru