Суббота, 23.11.2024, 22:36
Приветствую Вас, Гость
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Теория сложности вычислительных процессов и структур. Вар 8
engineerklubДата: Вторник, 10.09.2024, 04:23 | Сообщение # 1
Генералиссимус
Группа: Администраторы
Сообщений: 28524
Репутация: 0
Статус: Offline
Теория сложности вычислительных процессов и структур. Вариант №8

Тип работы: Работа Контрольная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
Работы зачтены. В файле - 3 лабораторные работы + Контрольная по предмету

Комментарии: Задание на контрольную работу

Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц . Матрицы имеют следующие размерности: 1 2 3 4 5 6 7 8 9 10 11 12 M M M M M M M M M M M M
1 0 1 2 1 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12 11 12 [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]. M r r M r r M r r M r r M r r M r r M r r M r r M r r M r r M r r M r r            
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.

. Номер варианта  r0  r1  r2  r3  r4  r5  r6  r7  r8  r9  r10  r11  r12
0  8  6  2  5  9  3  6  4  7  3  9  7  2
1  6  9  4  8  9  3  5  6  8  7  2  6  8
2  5  3  2  6  9  7  4  9  2  6  7  4  7
3  4  6  6  9  7  5  6  4  2  9  3  7  5
4  9  5  2  8  5  6  9  8  3  4  7  9  2
5  5  8  3  4  9  5  7  6  8  4  9  2  6
6  6  3  9  4  9  4  8  6  4  7  9  9  6
7  2  2  9  6  9  3  7  7  9  8  3  4  2
8  5  6  8  7  2  3  2  9  4  4  4  8  5
9  6  5  5  9  7  8  9  8  3  2  8  4  6

ЛАБ 1
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
0 14 9 3 22 17 16 0 14 18
14 0 19 0 2 0 11 14 21 20
9 19 0 17 20 22 4 4 8 9
3 0 17 0 11 3 20 12 10 15
22 2 20 11 0 14 19 17 15 19
17 0 22 3 14 0 0 6 10 0
16 11 4 20 19 0 0 3 11 9
0 14 4 12 17 6 3 0 7 4
14 21 8 10 15 10 11 7 0 7
18 20 9 15 19 0 9 4 7 0

ЛАБ 2
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
Вариант 8
0 11 0 0 1 1 4 0 0 3
11 0 5 6 6 8 5 11 4 8
0 5 0 3 9 6 6 9 2 11
0 6 3 0 7 6 3 7 11 8
1 6 9 7 0 3 3 9 9 0
1 8 6 6 3 0 9 3 1 7
4 5 6 3 3 9 0 3 7 10
0 11 9 7 9 3 3 0 0 3
0 4 2 11 9 1 7 0 0 10
3 8 11 8 0 7 10 3 10 0

ЛАБ 3
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и
масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
Номер товара, i mi сi M
1 8 41 57
2 11 56 
3 7 28 52
4 6 32 

СКАЧАТЬ
 
  • Страница 1 из 1
  • 1
Поиск:

Рейтинг@Mail.ru