Суббота, 26.07.2025, 03:30
Приветствую Вас, Гость
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Методы машинного обучения. Вариант 3
engineerklubДата: Понедельник, 21.07.2025, 14:58 | Сообщение # 1
Генералиссимус
Группа: Администраторы
Сообщений: 34253
Репутация: 0
Статус: Offline
Методы машинного обучения. Вариант 3

Тип работы: Работа Контрольная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
Контрольная работа по методам классификации

Выбор варианта:
N = 3
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=6
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=3
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=1
Обучающая последовательность и тестовый объект для метода ближайших соседей:
6) (X,Y)={ (7,8,1), (6,7,1), (2,1,1), (2,4,1), (9,9,1), (8,4,1), (4,7,1), (11,13,2), (6,11,2), (14,8,2), (11,7,2)}: тестовый объект x’=(6,1)
Весовая функция:
3) — метод парзеновского окна фиксированной ширины ; h=0.1
Здесь — заданная неотрицательная монотонно невозрастающая функция на , K®=e^(-r)
k = 3
Обучающая последовательность и тестовый объект для метода построения решающего дерева:
1) (X,Y)={(1,8,1), (1,3,1), (3,5,1), (1,1,1), (2,7,1), (3,8,1), (2,4,1), (8,7,2), (11,12,2), (12,14,2), (8,13,2)}: тестовый объект x’=(5,8)

Задание:
Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения.
Построить классификатор на основе алгоритма CART построения дерева принятия решений. 

СКАЧАТЬ
 
  • Страница 1 из 1
  • 1
Поиск:

Рейтинг@Mail.ru