Воскресенье, 12.01.2025, 02:01
Приветствую Вас, Гость
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Дискретная математика. Вариант № 6
engineerklubДата: Воскресенье, 17.10.2021, 07:35 | Сообщение # 1
Генералиссимус
Группа: Администраторы
Сообщений: 29495
Репутация: 0
Статус: Offline
Дискретная математика. Вариант № 6

ип работы: Работа Контрольная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
Вариант 6 
№1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\\C) \\ (B\\C) = (A\\B)\\C  б) (AB)(CD)=(AC)(BD).
№2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1  AB, P2  B2. Изобразить P1, P2 графически. Найти P = (P2◦P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(a,4),(b,1),(b,4),(c,3)}; P2 = {(1,1),(2,4),(2,1),(3,3),(4,2),(4,1)}.
№3 Задано бинарное отношение P  R2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
P = {(x,y) | x + y = –2}.
№4 Доказать утверждение методом математической индукции:
№5 Бригада из десяти взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
№6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 5, 14 или 22? б) делящихся ровно на одно из этих трех чисел?
№7 Найти коэффициенты при a=x6·y2·z, b=x3·y·z2, c=x8·z2 в разложении (2·x2+3·y+5·z)6.
№8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 6·an+1 + 4·an = 0· и начальным условиям a1=1, a2=3.
№9 Орграф задан матрицей смежности. Необходимо:  
а) нарисовать граф;  
б) выделить компоненты сильной связности;  
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл). 1
№10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;  
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.

СКАЧАТЬ
 
  • Страница 1 из 1
  • 1
Поиск:

Рейтинг@Mail.ru