Вычислительная математика. ВАРИАНТ №9.
|
|
engineerklub | Дата: Четверг, 04.11.2021, 11:31 | Сообщение # 1 |
Генералиссимус
Группа: Администраторы
Сообщений: 29495
Статус: Offline
| Вычислительная математика. ВАРИАНТ №9.
Тип работы: Работа Лабораторная Форматы файлов: Исполняемые фалы (EXE), Microsoft Word, C++ Сдано в учебном заведении: ДО СИБГУТИ
Описание: 1 1.Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки. 2. Написать программу, которая а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции); б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ; в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения функции). В качестве функции взять N – последняя цифра пароля.
2 2. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы). 2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной. 3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной. 4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
где с=0.01N , N– последняя цифра пароля.
***фамилия начинается с согласной (метод Зейделя)
3. 1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001. 2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом. 3. Написать программу, которая а) выводит таблицу значений функции с рассчитанным оптимальным шагом h на интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции); б) По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной; в) выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения производной). В качестве функции взять где N – последняя цифра пароля.
СКАЧАТЬ
|
|
| |
engineerklub | Дата: Четверг, 04.11.2021, 11:31 | Сообщение # 2 |
Генералиссимус
Группа: Администраторы
Сообщений: 29495
Статус: Offline
| Вычислительная математика. ВАРИАНТ №9.
Тип работы: Работа Курсовая Форматы файлов: Исполняемые фалы (EXE), Microsoft Word, C++ Сдано в учебном заведении: ДО СИБГУТИ
Описание: Задание на курсовую работу Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием. 1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси. 2. Написать программу, которая: а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву); б) решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1); в) с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ; г) определяет количество теплоты , выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.1. 3. Программа должна выводить: а) найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности; б) решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значение x и соответствующее ему значение y); в) результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xi и соответствующее ему значение yi); г) количество теплоты Q. 4. Ответить на вопросы для защиты курсовой работы. где k – наименьший положительный корень уравнения Вопросы для защиты: 5, 6, 10, 14.
СКАЧАТЬ
|
|
| |