Воскресенье, 12.01.2025, 04:51
Приветствую Вас, Гость
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Вычислительная математика. Вариант №9
engineerklubДата: Вторник, 16.11.2021, 15:11 | Сообщение # 1
Генералиссимус
Группа: Администраторы
Сообщений: 29495
Репутация: 0
Статус: Offline
Вычислительная математика. Вариант №9

Тип работы: Работа Лабораторная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: СибГУТИ

Описание:
Лабораторная работа №1. Линейная интерполяция.

Задание на лабораторную работу
 Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
 Написать программу, которая
 выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
 по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках x_i=c+0.6h⋅i, i=1,2,...,14;
 выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взятьf(x)=c^3 Cos⁡((x+10c)/c), c=N+1, N – последняя цифра пароля.

Лабораторная работа №2
Задание к работе:

 Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
 Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
 Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
 Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
{■((0.95+с)x_1+(0.26+c)x_2+(-0.17+c)x_3+(0.27+c)x_4=2.48@(-0.15+с)x_1+(1.26+c)x_2+(0.36+c)x_3+(0.42+c)x_4=-3.16@(0.26+с)x_1+(-0.54+c)x_2+(-1.76+c)x_3+(0.31+c)x_4=1.52@(-0.44+с)x_1+(0.29+c)x_2+(-0.78+c)x_3+(-1.78+c)x_4=-1.29)┤
где с=0.01N, N– последняя цифра пароля.

Лабораторная работа №3. Численное дифференцирование

 Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения f^\' (x) по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
 Найти погрешность, с которой можно найти f^\' (x) с вычисленным в пункте a) оптимальным шагом.
 Написать программу, которая
 выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
 По составленной таблице вычисляет приближенные значения f^\' (x) в точках x_i=c+ih, i=1,2,…,15по формуле центральной разностной производной;
 выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взятьf(x)=1/c Sin⁡c x, c=N+1, где N – последняя цифра пароля.

СКАЧАТЬ
 
  • Страница 1 из 1
  • 1
Поиск:

Рейтинг@Mail.ru