Форматы файлов: Microsoft Word Сдано в учебном заведении: СибГУТИ
Описание: Билет № 11
1. Произведение векторов и их свойства.
В геометрическом смысле вектор — это направленный отрезок, обычно определяемый точками своего начала и конца. В физическом смысле под векторами обычно понимаются величины, имеющие направление в трёхмерном пространстве. Как правило, они характеризуются абсолютной величиной, направлением и точкой приложения (точкой привязки). Во времена Ньютона эти три категории были достаточно автономны и их увязка была своего рода искусством. Применение концепции векторов позволило формализовать естественную взаимосвязь этих категорий и сделать операции над ними более наглядными и удобными. При умножении вектора на число b = k · a в алгебраическом виде достаточно все его проекции умножить на это число: bx = k · ax ; by = k · ay ; bz = k · az .
В строго геометрическом смысле при умножении на число начало вектора остаётся на месте, а «удлиняется» его конец. Однако на физических иллюстрациях часто остаётся на месте точка конца вектора, скажем точка приложения силы, хотя в общем случае этот вопрос всегда определяется физическим смыслом решаемой задачи.
Операция умножения на число является коммутативной a · k = k · a (от перемены мест сомножителей результат не меняется). При положительном множителе результирующий вектор сонаправлен