Пятница, 10.01.2025, 20:34
Приветствую Вас, Гость
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Дискретная математика. Вариант №1.
engineerklubДата: Среда, 03.01.2018, 11:47 | Сообщение # 1
Генералиссимус
Группа: Администраторы
Сообщений: 29399
Репутация: 0
Статус: Offline
Контрольная работа По дисциплине: Дискретная математика. Вариант 1.

Тип работы: Работа Контрольная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
№1. Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\\B)  (A\\C) = A \\ (BC) б) (AB)C=(AC)(BC)

№2. Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1  AB, P2  B2. Изобразить P1, P2 графически. Найти P = (P2◦P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2 , Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(b,3),(c,2),(c,3),(c,4)}; P2 = {(1,1),(2,1),(2,2),(2,3),(2,4),(3,3),(4,4)}.

№3. Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
P Í R2, P = {(x,y) | x2 + y2 = 1}.

№4. Доказать утверждение методом математической индукции: 
(7n – 1) кратно 6 для всех целых n  1.

№5. Компания из 7 человек поехала на рыбалку. Для организации ужина и ночлега нужно заготовить дрова, развести костер, приготовить еду, поставить палатки. Для выполнения всех этих дел им необходимо разбиться на группы «костровые», «повара», «строители жилья». Сколько существует различных способов такого разделения, если в любую группу не должно входить менее 2 человек? Сколько существует различных способов разместиться на ночлег по трем совершенно одинаковым палаткам?

№6. Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 6, 9, 15? б) делящихся ровно на одно из этих трех чисел?

№7. Найти коэффициенты при a=x2•y2•z4, b=x2•y•z3, c=x4•y2 в разложении (5•x+4•y+z2)6 .

№8. Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2•an+2 + 5•an+1 + 3•an = 0• и начальным условиям a1=1, a2=2.

№9. Орграф задан матрицей смежности. Необходимо: 
а) нарисовать граф; 
б) выделить компоненты сильной связности; 
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл). 

№10. Взвешанный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса; б) кратчайшее расстояние от вершины v1 до остальных вершин графа, используя алгоритм Дейкстры. 

Комментарии: Уважаемый слушатель, дистанционного обучения, 
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Контрольная работа
Оценка: Отлично
Дата оценки: 12.04.2016
Рецензия:Уважаемый С*
Бах О.А. 

СКАЧАТЬ МОЖНО ЗДЕСЬ
 
  • Страница 1 из 1
  • 1
Поиск:

Рейтинг@Mail.ru