Среда, 15.01.2025, 18:19
Приветствую Вас, Гость
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Вычислительная математика. Вариант №18
engineerklubДата: Суббота, 06.05.2023, 06:44 | Сообщение # 1
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
Вычислительная математика. Вариант №18

Тип работы: Работа Курсовая
Форматы файлов: Microsoft Word
Сдано в учебном заведении: СибГУТИ

Описание:
Курсовая работа

Задание к работе:

Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
 Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
 Написать программу, которая:
 находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
 решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
 с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках x_i=0,0.1,0.2,…,1.9,2, i=0,1,…,20;
 определяет количество теплотыQ=∫_0^2▒〖y^2 dt〗, выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.01.
 Программа должна выводить:
 найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
 решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
 результаты линейной интерполяции в точках x_i=0,0.1,0.2,…,1.9,2, i=0,1,…,20 (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
 количество теплоты Q.
 Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.

Вариант 8
{■(y^\'=-sin⁡( 5x+y)+y/(2+3x)@y(0)=k)┤,
где k – наименьший положительный корень уравнения2x^4+8x^3+8x^2-3=0.
Вопросы для защиты: 4, 8, 9, 12.

СКАЧАТЬ
 
engineerklubДата: Суббота, 06.05.2023, 06:45 | Сообщение # 2
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
Ответы на вопросы:

1. Каким свойством должен обладать интервал изоляции корня нелинейного уравнения?
2. Как определить, что следует прекратить итерационный процесс при приближенном решении нелинейного уравнения методом деления пополам с заданной точностью?
3. Как определить, что следует прекратить итерационный процесс при приближенном решении нелинейного уравнения методом хорд с заданной точностью?
4. В каком виде следует выводить приближенные числа, если они найдены с точностью 0.0001?
В этом случае их следует выводить с четырьмя знаками после запятой.
5. В каком виде следует выводить приближенные числа, если они найдены с точностью 0.001?
6. Как определить, что при решении дифференциального уравнения методом Рунге-Кутта 4 порядка требуемая точность достигнута?
7. Приведите формулу оценки погрешности формулы метода Рунге-Кутта.
8. В чем заключается метод двойного пересчета?
Находят решение дифференциального уравнения на [a,b] дважды с шагом h и с шагом h/2. Затем сравнивают полученные двумя способами значения функции во всех точках xi, в которых были вычислены оба значения. Считается, что необходимая точность достигнута, если разность этих значений не превосходит ε для методов первого порядка точности, 3ε для методов второго порядка, 15ε для методов четвертого порядка.
9. В чем заключается смысл линейной интерполяции?
Геометрически линейная интерполяция означает замену графика функции на отрезке [xi, xi+1] хордой, соединяющей точки (xi, fi) и (xi+1, fi+1).
10. Приведите формулу оценки погрешности формулы линейной интерполяции.
11. Какой линией соединяются узлы интегрирования в методе Симпсона?
12. Какой линией соединяются узлы интегрирования в методе трапеций?
Узлы интегрирования в методе трапеций соединяются прямой.
13.  Приведите формулу оценки погрешности формулы Симпсона.
14. Приведите формулу оценки погрешности формулы трапеций.

СКАЧАТЬ
 
engineerklubДата: Суббота, 06.05.2023, 06:46 | Сообщение # 3
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
Тип работы: Работа Лабораторная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: СибГУТИ

Описание:
Лабораторная работа №1. Линейная интерполяция.

Задание к работе:

Лабораторная работа №1. Линейная интерполяция.

Задание на лабораторную работу
 Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
 Написать программу, которая
 выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
 по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках x_i=c+0.6h⋅i, i=1,2,...,14;
 выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взятьf(x)=c^3 Cos⁡((x+10c)/c), c=N+1, N – последняя цифра пароля.

=============================================

Лабораторная работа №2

Задание к работе:

 Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
 Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
 Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
 Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
{■((0.95+с)x_1+(0.26+c)x_2+(-0.17+c)x_3+(0.27+c)x_4=2.48@(-0.15+с)x_1+(1.26+c)x_2+(0.36+c)x_3+(0.42+c)x_4=-3.16@(0.26+с)x_1+(-0.54+c)x_2+(-1.76+c)x_3+(0.31+c)x_4=1.52@(-0.44+с)x_1+(0.29+c)x_2+(-0.78+c)x_3+(-1.78+c)x_4=-1.29)┤
где с=0.01N, N– последняя цифра пароля.

=============================================

Лабораторная работа №3. Численное дифференцирование

Задание к работе:

 Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения f^\' (x) по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
 Найти погрешность, с которой можно найти f^\' (x) с вычисленным в пункте a) оптимальным шагом.
 Написать программу, которая
 выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
 По составленной таблице вычисляет приближенные значения f^\' (x) в точках x_i=c+ih, i=1,2,…,15по формуле центральной разностной производной;
 выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взятьf(x)=1/c Sin⁡c x, c=N+1, где N – последняя цифра пароля.

СКАЧАТЬ
 
  • Страница 1 из 1
  • 1
Поиск:

Рейтинг@Mail.ru