Среда, 15.01.2025, 21:43
Приветствую Вас, Гость
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Интеллектуальные технологии информационной безопасности Вар5
engineerklubДата: Понедельник, 19.06.2023, 14:20 | Сообщение # 1
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
Интеллектуальные технологии информационной безопасности. Вариант №5 

Тип работы: Работа Контрольная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: СибГУТИ

Описание:
Контрольная работа
Вариант №5

Выбор варианта:
N = 5
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=8
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=1
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=6
Обучающая последовательность и тестовый объект для метода ближайших соседей:
8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3), (2,14,3), (1,7,3), (5,14,3), (6,6,3), (9,6,3)}: тестовый объект x’=(5,6)
Весовая функция:
1) w(i,u)=[i≤k] — метод k ближайших соседей;
k = 4
Обучающая последовательность и тестовый объект для метода построения решающего дерева:
6) (X,Y)={(7,8,1), (6,7,1), (2,1,1), (2,4,1), (9,9,1), (8,4,1), (4,7,1), (11,13,2), (6,11,2), (14,8,2), (11,7,2)}: тестовый объект x’=(6,1)

------------------------------------------------------------------------------

Задание:
1) Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения.
2) Построить классификатор на основе алгоритма CART построения дерева принятия решений.

СКАЧАТЬ
 
engineerklubДата: Понедельник, 19.06.2023, 14:23 | Сообщение # 2
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
Тип работы: Работа Лабораторная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: СибГУТИ

Описание:
Лабораторная работа 1. «Метод k ближайших соседей»
Вариант 05

Выбор варианта:
NC = 5
Тип классификатора:
NВ = (NC mod 3) + 1 = 3
3. Метод парзеновского окна с относительным размером окна.

Вариант функции ядра для метода празеновского окна определяется по формуле:
NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 1
1. Q — квадратическое K(x) = (1 - r2)2[r ≤ 1]

Вариант файла с данными для классификации определяется по формуле:
NФ = ((NC + 2) mod 5) + 1 = 3
Файл: data3.csv.

1  Результаты тестирования
Надёжность предсказания реализованного классификатора на тестовой выборке составила 94.39 %.

=============================================

Лабораторная работа 2. «Решающие деревья»

1  Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса
Таблица 1. Результаты N запусков Решающего дерева
 Максимальная глубина дерева
(max_depth) Максимальное количество
листьев
(max_leaf_nodes) точность предсказания в
процентах
1 1 2 83,9%
2 5 10 93,2%
3 50 100 98,8%
4 100 200 99,0%
Таблица 2. Результаты M запусков леса
 Максимальная глубина дерева
(max_depth) Максимальное количество
листьев
(max_leaf_nodes) Количество деревьев
(n_estimators) точность предсказания в
процентах
1 1 1 2 77,7%
2 5 5 10 93,4%
3 50 50 100 96,9%
4 100 100 200 99,9%

2  Параметры дерева, на которых достигается наилучшая точность предсказания
Максимальная глубина дерева (max_depth): 100
Максимальное количество листьев (max_leaf_nodes): 200
3  Параметры леса, на которых достигается наилучшая точность предсказания
Максимальная глубина дерева (max_depth): 100
Максимальное количество листьев (max_leaf_nodes): 100
Количество деревьев (n_estimators): 200

=============================================

Лабораторная работа 3. «Регрессия»

1  Результаты работы программы
Таблица 1. Результаты 10 запусков
Номер запуска Процент правильности предсказания типа статьи
1 98.7 %
2 98.5 %
3 98.7 %
4 98.5 %
5 98.6 %
6 98.6 %
7 98.3 %
8 98.8 %
9 98.7 %
10 98.6 %
Среднее значение предсказания типа статьи исходя из 10 запусков: 98,6 %.

СКАЧАТЬ
 
  • Страница 1 из 1
  • 1
Поиск:

Рейтинг@Mail.ru