Четверг, 16.01.2025, 03:12
Приветствую Вас, Гость
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Элементы высшей математики. Синергия 2022
engineerklubДата: Понедельник, 07.08.2023, 17:01 | Сообщение # 1
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
Элементы высшей математики. Синергия 2022

Тип работы: Тесты
Сдано в учебном заведении: МФПУ "Синергия"

Описание:
139 вопросов. Правильные ответы выделены в тексте.
1. Векторы AC = a и BD = b служат диагоналями параллелограмма ABCD. Выразите вектор DA через векторы a и b
Тип ответа: Одиночный выбор
• 1) DA = (a − b) / 2
• 2) DA = (a + b) / 2
• 3) DA = −(a + b) / 2
2. Вычислите выражение ((13 1/4 - 2 5/27 - 10 5/6) ⋅ 230,04 + 46,75) / 0,01
Тип ответа: Одиночный выбор
• 10000
• 100
• 10
• 1000
3. Вычислите интеграл J = ∫ cos(lnx)dx / x
Тип ответа: Одиночный выбор
• sin (lnx)+C
• ln sin x+C
• cos ln x+C
• -sin ln x+C
4. Вычислите определенный интеграл ∫ (eˣ - cosx)dx, x=0..π
Тип ответа: Одиночный выбор
• e^π-1
• e^π-2
• e^π
• e^π+ 1
5. Вычислите определенный интеграл ∫ √(1 - x)dx, x = 0..1
Тип ответа: Одиночный выбор
• 1) 2/3
• 2) 1,5
• 3) 2 2/3
• 4) 0
6. Вычислите определенный интеграл ∫ √(x)dx, x = 1..4
Тип ответа: Одиночный выбор
• 1) 4 2/3
• 2) 2 2/3
• 3) 4
• 4) 2
7. Вычислите определенный интеграл ∫ 2dt / cos²t, t = 0..π/4
Тип ответа: Одиночный выбор
• 1) 2 1/2
• 2) 2
• 3) 4
• 4) 1
8. Вычислите определенный интеграл ∫ dx / (1 - 2x)³, x = -2..0
Тип ответа: Одиночный выбор
• 0,24
• 0,3
• 0,4
• 0,008
9. Вычислите определенный интеграл ∫ e^xdx / (e^x + 5), x = 0..1
Тип ответа: Одиночный выбор
• 1) ln((e + 5) / 6)
• 2) lne + 5
• 3) e^x + 5
• 4) 1 / (e + 5)
10. Вычислите определенный интеграл ∫ x²dx, x=0..3
Тип ответа: Одиночный выбор
• 9
• 7
• 6
• 3
11. Вычислите определитель |(1, 3, -2), (5, 1, 4), 3, 2, 1)|
Тип ответа: Одиночный выбор
• 56
• 1
• 0
• -42
12. Вычислите определитель матрицы системы {2x - 4y = 1; 3x + 5y = -2
Тип ответа: Одиночный выбор
• -2
• -3
• 22
• -7
13. Вычислите определитель D = |(1, -2, 3), (3, 5, -1), (4, 1, 2)|
Тип ответа: Одиночный выбор
• -20
• 20
• 10
• -10
14. Вычислите площадь фигуры, ограниченной линиями 4y=x^2 и y^2=4x
Тип ответа: Одиночный выбор
• 16/3
• 3/16
• 16
• 3

СКАЧАТЬ
 
engineerklubДата: Понедельник, 07.08.2023, 17:02 | Сообщение # 2
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
15. Вычислите предел по правилу Лопиталя lim (√(5 - x) - 2) / (√(2 - x) - 1), x⟶1
Тип ответа: Одиночный выбор
• 1) -1/3
• 2) 1/3
• 3) -1/2
• 4) 1/2
16. Вычислите предел по правилу Лопиталя lim (3x² + 2x - 1) / (-x² + x + 2), x⟶-1
Тип ответа: Одиночный выбор
• 1) 4
• 2) 4/3
• 3) 1/3
• -4) -4/3
17. Вычислите предел по правилу Лопиталя lim lnx / ctgx, x⟶0
Тип ответа: Одиночный выбор
• 7
• 2
• 1
• 0
18. Вычислите предел по правилу Лопиталя lim x² / (1 - cos6x), x⟶0
Тип ответа: Одиночный выбор
• 11
• 1
• 2
• 1/18
19. Вычислите произведение матриц ((1, 2), (-2, -1)) ⋅ ((3, 0), (-2, 1))
Тип ответа: Одиночный выбор
• 1) ((3, 0), (4, −1))
• 2) ((−1, 2), (−4, −1))
• 3) ((3, 0), (−4, −1))
• 4) ((−1, 2), (4, 1))
20. Вычислите с точностью до десятых (3/5 + 0,425 - 0,005) : 0,1 / (30,5 + 1/3 + 3 1/3)
Тип ответа: Одиночный выбор
• 0,1
• 0,2
• 0,3
• 0,4
21. Дана функция f(x) = 4x + 8/x. Решите уравнение f\'(x) = 0
Тип ответа: Одиночный выбор
• 1) 0; 2
• 2) -2; 2
• 3) -√2; √2
• 4) √2
22. Дано: |a₁| = 3, |a₂| = 4, (a₁,᷍ a₂) = 2π/3. Вычислите (a₁ + a₂)²
Тип ответа: Одиночный выбор
• 144
• 12
• 11
• 13
23. Дано: a ⋅ b Найдите |a| = 8, |b| = 8, (a, ᷍ b) = π/3.
Тип ответа: Одиночный выбор
• -20
• 40
• 10
• 32
24. Даны вершины треугольника ABC: A(3; -1), B(4; 2) и C(-2; 0). Укажите уравнения его сторон
Тип ответа: Одиночный выбор
• 1) x - y + 10 = 0, 3x - 3y + 2 = 0, x + 5y + 2 = 0
• 2) 3x - y = 0, x + 3y - 6 = 0, x - 5y + 3 = 0
• 3) 3x - y - 10 = 0, x - 3y + 2 = 0, x + 5y + 2 = 0
25. Даны прямые (x + 2) / 2 = y / -3 = (z - 1) / 4 и (x - 3) / α = (y - 1) / 4 = (z - 7) / 2. При каком значении α они перпендикулярны?
Тип ответа: Одиночный выбор
• α = - 2
• α = 1
• α = 4
• α = 2
26. Даны точки M (-5; 7; -6), N (7; -9; 9). Вычислите проекцию вектора a = {1; -3; 1} на вектор
Тип ответа: Одиночный выбор
• 4
• 25
• 75
• 3
27. Для функции y = sinx / x
Тип ответа: Одиночный выбор
• точка x=0 является точкой …
• непрерывности
• разрыва 2-го рода
• устранимого разрыва
• экстремума
28. Каково необходимое условие возрастания функции?
Тип ответа: Одиночный выбор
• 1) если функция y=f(x) лифференцируема и возрастает на интервале (a;b), то f\'(x)=0 для всех x их этого интервала
• 2) если функция y=f(x) лифференцируема и возрастает на интервале (a;b), то f\'(x)≤0 для всех x их этого интервала
• 3) если функция y=f(x) лифференцируема и возрастает на интервале (a;b), то f\'(x)≥0 для всех x их этого интервала
29. Какое из перечисленных чисел является иррациональным?
Тип ответа: Одиночный выбор
• 1) 1 1/2
• 2) 4,99
• 3) 5,4(15)
• 4) 3,141592…
30. Какой из перечисленных векторов коллинеарен вектору AB = (4; -8)?
Тип ответа: Одиночный выбор
• 1) MK = (2/3; −3/2)
• 2) LN = (3/2; −2/3)
• 3) EF = (3/2; −3/4)
• 4) CD = (2/3; −4/3)

СКАЧАТЬ
 
engineerklubДата: Понедельник, 07.08.2023, 17:02 | Сообщение # 3
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
31. Коллинеарными называются векторы, …
Тип ответа: Одиночный выбор
• лежащие на перпендикулярных прямых
• лежащие исключительно на одной прямой
• лежащие на одной прямой или на параллельных прямых
32. Матрица А^-1 является обратной матрицей к матрице А, если
Тип ответа: Одиночный выбор
• только А^-1⸱А=Е
• А^-1⸱А=А⸱А^-1=Е
• только А⸱А^-1=Е
• А^-1⸱А=А⸱А^-1=1
33. Матрица называется невырожденной, если ее определитель …
Тип ответа: Одиночный выбор
• равен нулю
• равен единице
• не равен нулю
• равен положительному числу
34. Матричное уравнение А⸱Х =В имеет решение …
Тип ответа: Одиночный выбор
• X=A^-1B
• X=BA^-1
• X=A-B
• X=B-A
35. Метод Гаусса решения системы линейных уравнений предполагает использование …
Тип ответа: Одиночный выбор
• алгебраического сложения
• определителей системы
• формул для вычисления неизвестных
• последовательного исключения неизвестных
36. Найдите ∛(-8)
Тип ответа: Одиночный выбор
• 2
• -24
• -2
37. Найдите ∫ (3 + 5x)⁴dx
Тип ответа: Одиночный выбор
• 1) 1/16 ⋅ (3 + 5x)³ + C
• 2) 1/15 ⋅ (3 + 5x)³ + C
• 3) 1/25 ⋅ (3 + 5x)⁵ + C
• 4) 1/25 ⋅ (3 + 5x)⁴ + C
38. Найдите ∫ (x - 3)dx, если при x= 2 первообразная функция равна
Тип ответа: Одиночный выбор
• 1) 2x² - 3x + 13
• 2) 2x² + 3x - 13
• 3) 1/2 ⋅ x² - 3x + 13
• 4) 1/2 ⋅ x + 3x + 13
39. Найдите ∫ √(x)dx
Тип ответа: Одиночный выбор
• 1) x√x + C
• 2) 2/3 ⋅ √x + C
• 3) 2/3 ⋅ x√x + C
• 4) 3/2 ⋅ x√x + C
40. Найдите ∫ 2xdx
Тип ответа: Одиночный выбор
• 4x^2 + С
• x + С
• x^2 + С
• 2x^2+C
41. Найдите ∫ 3dt / 2t
Тип ответа: Одиночный выбор
• 1) 3ln|t| + C
• 2) 2ln|t| + C
• 3) 3/2 ⋅ ln|t| + C
• 4) 2/3 ⋅ ln|t| + C
42. Найдите ∫ dx / cos²(1 - 2x)
Тип ответа: Одиночный выбор
• 1) tg(2x - 1) + C
• 2) 1/2 ⋅ ctg(2x - 1) + C
• 3) 1/2 ⋅ tg(2x - 1) + C
• 4) ctg(2x - 1) + C
43. Найдите ∫ lnxdx / x
Тип ответа: Одиночный выбор
• 1) 1/2 ⋅ lnx + C
• 2) -1/2 ⋅ lnx + C
• 3) 1/2 ⋅ ln²x + C
• 4) -1/2 ⋅ ln²x + C
44. Найдите ∫ sin³x cosx dx
Тип ответа: Одиночный выбор
• 1) x√x + C
• 2) 2/3 ⋅ √x + C
• 3) 2/3 ⋅ x√x + C
• 4) 3/2 ⋅ x√x + C
45. Найдите ∫ x²sin3x³dx
Тип ответа: Одиночный выбор
• 1) 1/6 ⋅ cos3x³ + C
• 2) -1/6 ⋅ cos3x² + C
• 3) 1/9 ⋅ cos3x³ + C
• 4) -1/9 ⋅ cos3x³ + C
46. Найдите ∫ xe^(x²)dx
Тип ответа: Одиночный выбор
• 1) 2xeˣ + C
• 2) 2xeˣ² + C
• 3) 1/2 ⋅ xeˣ² + C
• 4) 1/2 ⋅ eˣ² + C
47. Найдите ∫ xⁿ⁻¹
Тип ответа: Одиночный выбор
• 1) xⁿ + C
• 2) 1/n ⋅ x + C
• 3) 1/n ⋅ xⁿ + C
• 4) 1 / (n − 1) ⋅ xⁿ + C

СКАЧАТЬ
 
engineerklubДата: Понедельник, 07.08.2023, 17:03 | Сообщение # 4
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
48. Найдите А · В, где A = ((5, 0, 2, 3), (4, 1, 5, 3), (3, 1, -1, 2)); B = ((6), (-2), (7), (4))
Тип ответа: Одиночный выбор
• 1) ((5, 6), (6, 9), (2, 7))
• 2) ((5, 6), (6, 6), (1, 7))
• 3) ((5, 6), (4, 9), (1, 7))
• 4) ((5, 6), (6, 9), (1, 7))
49. Найдите АВ - АС, где A = ((2, -3), (0, 1)); B = ((1, 3), (0, 4))
Тип ответа: Одиночный выбор
• 1) ((4, -2), (-3, 1))
• 2) ((4, 2), (3, -1))
• 3) ((4, 2), (3, 1))
• 4) ((-2, 3), (0, -1))
50. Найдите значение выражения -3 ⋅ (2/3)² - 0,5²
Тип ответа: Одиночный выбор
• 1) 1 11/12
• 2) -1 2/9
• 3) -1 5/12
• 4) -1 7/12
51. Найдите значение выражения ((a + 1)² / (a² - 1) - 1) ⋅ (1 - a / (a + 1)) при a=2
Тип ответа: Одиночный выбор
• 1) 2
• 2) 1
• 3) 1/3
• 4) 2/3
52. Найдите координаты точки пересечения прямых 2x - y - 3 = 0 и 4x + 3y - 11 = 0
Тип ответа: Одиночный выбор
• (1; 3)
• (1; 2)
• (2; 2)
• (2; 1)
53. Найдите координаты точки K пересечения прямой (x - 1) / 2 = (y - 2) / 3 = (z - 3) / 4 с плоскостью 2x + 5y - 3z = 0
Тип ответа: Одиночный выбор
• 1) K(1/7; 5/7; 9/7)
• 2) K(2/7; 5/7; 9/7)
• 3) K(1/7; 5/7; 3/7)
• 4) K(1/7; 2/7; 9/7)
54. Найдите наибольшее и наименьшее значения функции Y=x^2 на промежутке [-1; 3]
Тип ответа: Одиночный выбор
• Yнаиб = 9,Yнаим = 1
• Yнаиб = 6,Yнаим = -2
• Yнаиб = 9, Yнаим = 0
55. Найдите обратную матрицу для матрицы A = ((2, 2, 3), (1, -1, 0), (-1, 2, 1))
Тип ответа: Одиночный выбор
• 1) A⁻¹ = ((1, -2, 7), (0, 1, -2), (0, 0, 1))
• 2) A⁻¹ = ((1, -4, -3), (1, -5, -3), (-1, 6, 4))
• 3) A⁻¹ = ((-3, 1, -4), (-3, 1, -5), (4, -1, 4))
• 4) A⁻¹ = ((1, 4, 3), (1, -5, 3), (1, 6, -4))
56. Найдите общее решение системы {9x₁ - 3x₂ + 5x₃ + 6x₄ = 4; 6x₁ - 2x₂ + 3x₃ + 4x₄ = 5; 3x₁ - x₂ + 3x₃ + 14x₄ = -8
Тип ответа: Одиночный выбор
• 1) {x₁ = c; x₂ = 11 + c; x₃ = −7; x₄ = 0
• 2) {x₁ = c; x₂ = 13 + c; x₃ = −7; x₄ = 1
• 3) {x₁ = 1 − c; x₂ = 13 + c; x₃ = −7; x₄ = 0
• 4) {x₁ = c; x₂ = 3c − 13; x₃ = −7; x₄ = 0
57. Найдите общее решение уравнения (x + y)dx + xdy = 0
Тип ответа: Одиночный выбор
• 1) y = (C - x²;) / 2x
• 2) y = (x² - C) / 2x
• 3) y = (C - x²;) / x
58. Найдите общее решение уравнения x² ⋅ d²y / dx² = 2
Тип ответа: Одиночный выбор
• 1) y = lnx + Cx + C₁
• 2) y = 2lnx + Cx + C₁
• 3) y = -lnx + Cx + C₁
59. Найдите общее решение уравнения xy^2dy = (x^3 + y^3)dx
Тип ответа: Одиночный выбор
• 1) y³ = 3x³ln|Cx|
• 2) y³ = 3xln|Cx|
• 3) y³ = 3x³lnCx
60. Найдите общее решение уравнения y\' - y/x = x
Тип ответа: Одиночный выбор
• 1) y = x² + Cx
• 2) y = x² -- Cx
• 3) y = 2x² + Cx
61. Найдите общее решение уравнения y\'\' - 9y = e²ˣ
Тип ответа: Одиночный выбор
• 1) y = C₁e³ˣ + C₂e⁻³ˣ - 1/5 ⋅ e²ˣ
• 2) y = C₁e³ˣ + C₂ - 1/2 ⋅ e²ˣ
• 3) y = e³ˣ(C₁ + C₂x) - 1/2 ⋅ e²ˣ
• 4) y = C₁e³ˣ + C₂e⁻³ˣ + e²ˣ
62. Найдите острый угол между прямыми (x - 1) / 1 = (y + 2) / -1 = z / √2 и (x + 2) / 1 = (y - 3) / 1 = (z + 5) / √2
Тип ответа: Одиночный выбор
• 60°
• 30°
• 20°
• 45°
63. Найдите площадь фигуры, заключенной между прямыми y = 4x - 5, x = -3, x = -2 и осью Ox
Тип ответа: Одиночный выбор
• 15
• 12
• 10
• 7
64. Найдите площадь фигуры, ограниченной прямыми y = 5x, x = 2 и осью Ox
Тип ответа: Одиночный выбор
• 10
• 7
• 12
• 15
65. Найдите предел lim ((2 + x) / (3 + x))ˣ, x⟶∞
Тип ответа: Одиночный выбор
• 1) 0
• 2) -1
• 3) ∞
• 4) 1/e
66. Найдите предел lim (√(1 + 6x) - 5) / (√x - 2), x⟶4
Тип ответа: Одиночный выбор
• 1) √6
• 2) 12/5
• 3) 2
• 4) 3/20
67. Найдите предел lim (√(x² + 4x + 2) - √(x² - 2x + 2)), x⟶∞
Тип ответа: Одиночный выбор
• 1) 1
• 2) -1
• 3) 3
• 4) ∞

СКАЧАТЬ
 
engineerklubДата: Понедельник, 07.08.2023, 17:03 | Сообщение # 5
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
68. Найдите предел lim (1 - 5/x)ˣ, x⟶∞
Тип ответа: Одиночный выбор
• e^3
• e^2
• e^5
• e^-5
69. Найдите предел lim (2x + 1) / (x² - 3), x⟶∞
Тип ответа: Одиночный выбор
• 1) ∞
• 2) 1
• -3) -1/3
• 4) 0
70. Найдите предел lim (2x² + 1) / (x² - 3), x⟶∞
Тип ответа: Одиночный выбор
• 1) ∞
• 2) 1
• 3) -1/3
• 4) 2
71. Найдите предел lim (3n² + n - 1) / (2n² + 3), n⟶∞
Тип ответа: Одиночный выбор
• 3
• 0,5
• 0
• 1,5
72. Найдите предел lim (3n³ + n - 1) / (2n² - 3), n⟶∞
Тип ответа: Одиночный выбор
• 1) ∞
• 2) 0,5
• 3) 0
• 4) 1,5
73. Найдите предел lim (5n² + n + 1) / (3n² - n - 4), n⟶∞
Тип ответа: Одиночный выбор
• 1) 1
• 2) 5/3
• 3) -1
74. Найдите предел lim (5ˣ - cosx), x⟶0
Тип ответа: Одиночный выбор
• 0
• 1
• 4
• 5
• -1
75. Найдите предел lim (x² - 2) / (2x² - 5x - 7), x⟶1
Тип ответа: Одиночный выбор
• 1) 0,5
• 2) 1
• 3) 0
• 4) ∞
76. Найдите предел lim (x² - 4), x⟶3
Тип ответа: Одиночный выбор
• -5
• 1
• -1
• 5
77. Найдите предел lim (x² + x - 3) / (2x - 1), x⟶-1
Тип ответа: Одиночный выбор
• -1
• 0
• 1
78. Найдите предел lim 2 / (3x + 2), x⟶∞
Тип ответа: Одиночный выбор
• 1) ∞
• 2) 1
• 3) 0
79. Найдите предел lim 2x / (x - 1), x⟶0
Тип ответа: Одиночный выбор
• 1) 2
• 2) ∞
• 3) -2
• 4) 0
80. Найдите предел lim sin5x / x, x⟶0
Тип ответа: Одиночный выбор
• 5
• 1/5
• 1
• 0
81. Найдите предел lim tg5x / x, x⟶0
Тип ответа: Одиночный выбор
• 1) 1
• 2) -1
• 3) 5
• 4) ∞
82. Найдите предел lim(x/5), x⟶0
Тип ответа: Одиночный выбор
• 1) 1/5
• 2) 1
• 3) 0
83. Найдите производную функции f(x) = (1 + cosx)sinx
Тип ответа: Одиночный выбор
• 1+cos2x
• cosx+sin2x
• cosx+cos 2x
84. Найдите производную функции f(x) = ln(1 + a/x)
Тип ответа: Одиночный выбор
• 1) −1/x
• 2) a / (a + x)
• 3) −a / (x(a + x))
85. Найдите производную функции y = (3eˣ + x)cosx
Тип ответа: Одиночный выбор
• -(3e^x + 1) · sin x
• (3e^x-1+ 1) · cos x - (3e^x+x) · sin x
• (3e^x + 1) · cos x + (3e^x + x) · sin x
• (3e^x + 1) · cos x - (3e^x + x) · sin x
86. Найдите производную функции y = sin(2x² + 3)
Тип ответа: Одиночный выбор
• sin2x^2
• 4xcos4x
• cos(2x^2 + 3)
• 4xcos(2x^2 + 3)
87. Найдите производную функции y = xe^x - e^x
Тип ответа: Одиночный выбор
• xe
• e^x
• xe^x

СКАЧАТЬ
 
engineerklubДата: Понедельник, 07.08.2023, 17:04 | Сообщение # 6
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
88. Найдите производную функции y=2tgx
Тип ответа: Одиночный выбор
• 1) 2ᵗᶢˣ / (ln2 ⋅ cos²x)
• 2) 1 / (2^cos²x ⋅ ln2)
• 3) tgx2ᵗᶢˣ⁻¹ ⋅ 1 / cos²x
• 4) 2ᵗᶢˣln2 ⋅ 1 / cos²x
89. Найдите производную функции y=ln sin x
Тип ответа: Одиночный выбор
• ctg x
• tg x
• sin x
• cos x
90. Найдите промежутки возрастания или убывания функции y = - 2x^2 + 8x - 1
Тип ответа: Одиночный выбор
• убывает при x > -2, возрастает при x < -2
• убывает при x < 2, возрастает при x > 2
• убывает при x > 2, возрастает при x < 2
91. Найдите промежутки возрастания или убывания функции y = x^2 - 3x + 1
Тип ответа: Одиночный выбор
• 1) убывает при x>3/2, возрастает при x<3/2
• 2) убывает при x<2/3, возрастает при x>2/3
• 3) убывает при x<3/2, возрастает при x>3/2
92. Найдите скорость тела, движущегося по закону S = 3t - 5
Тип ответа: Одиночный выбор
• 1
• 5
• 3
93. Найдите точки максимума (минимума) функции y = x^2 - 2x
Тип ответа: Одиночный выбор
• (0; -1) – точка максимума
• (1; -1) – точка максимума
• (1; -1) – точка минимума
94. Найдите точки максимума (минимума) функции y= -5x^2- 2x + 2
Тип ответа: Одиночный выбор
• (-0,2; 0) – точка максимума
• (2,2; -0,2) – точка минимума
• (-0,2; 2,2) – точка максимума
95. Найдите точки перегиба кривой y = x^4 - 12x^3 + 48x^2 - 50
Тип ответа: Одиночный выбор
• (2; 4) и (4; 06)
• (2; 206) и (4; 2)
• (2; 2) и (4; 06)
96. Найдите точку перегиба кривой y = 1/3 ⋅ x³ - x
Тип ответа: Одиночный выбор
• (-1; 0)
• (0; 1)
• (1; 1)
• (0; 0)
97. Найдите угол между векторами α = 2m + 4n и b = m - n, где m и n – единичные векторы и угол между m и n равен 120
Тип ответа: Одиночный выбор
• 90
• 180
• 100
• 120
98. Найдите уравнение прямой, проходящей через точки M1(3; 2), M2(4; -1)
Тип ответа: Одиночный выбор
• x+y-12=0
• 3x+2y-11=0
• 3x+y-11=0
• 3x-y+11=0
99. Найдите уравнение прямой, проходящей через точку пересечения прямых 2x + 3y - 8 = 0 и x - 4y + 5 = 0 и через точку M1(-2; 3)
Тип ответа: Одиночный выбор
• 5x+13y-29=0
• 5x+3y-29=0
• 5x+13y-9=0
• 3x+8y-18=0
100. Найти решение системы {2x - 4y + 3z = 1; x - 2y + 4z = 3; 3x - y + 5z = 2
Тип ответа: Одиночный выбор
• {(-1; 0; -1)}
• {(1; 0; -1)}
• {(1; 0; 1)}
• {(-1; 0; 1)}
101. Напишите каноническое уравнение гиперболы, фокусы которой лежат на оси Ox, если даны a = 6 и b = 2
Тип ответа: Одиночный выбор
• 1) x² / 36 + y² / 4 = 1
• 2) x² / 6 - y² / 2 = 1
• 3) x² / 36 - y² / 4 = 1
102. Напишите каноническое уравнение эллипса, если даны его полуоси a = 5 и b = 4
Тип ответа: Одиночный выбор
• 1) x²/15 - y²/8 = 1
• 2) x²/5 + y²/2 = 1
• 3) x²/25 + y²/16 = 1
103. Неравенству - 8 < x < 4 удовлетворяют … целых чисел
Тип ответа: Одиночный выбор
• 12
• 10
• 11
• 9
104. Общий член последовательности 1/(1⋅3), 2/(3⋅5), 3/(5⋅7), 4/(7⋅9), … имеет вид …
Тип ответа: Одиночный выбор
• 1) aₙ = 3n / ((3n - 1)(2n + 1))
• 2) aₙ = n / (2n + 1)
• 3) aₙ = n / ((2n - 1)(2n + 1))

СКАЧАТЬ
 
engineerklubДата: Понедельник, 07.08.2023, 17:04 | Сообщение # 7
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
105. Определите полуоси гиперболы x² / 16 - y² = 1
Тип ответа: Одиночный выбор
• a = 4, b= 6
• a = 4, b = 1
• a = 3, b = 8
• a = 6, b = 1
106. Определите уравнение прямой, отсекающей на оси Oy отрезок b = 2 и составляющей с осью Ox угол = 45°
Тип ответа: Одиночный выбор
• y = 2x - 2
• y = 2x + 2
• y = x - 2
• y = x + 2
107. Определитель системы трех линейных неоднородных уравнений с тремя неизвестными равен 5. Это означает, что …
Тип ответа: Одиночный выбор
• система имеет нулевое решение
• система имеет множество решений
• система не имеет решения
• система имеет единственное решение
108. Первообразная для функции x² + x имеет вид …
Тип ответа: Одиночный выбор
• 1) 1/3 ⋅ x³ + 1/2 ⋅ x² + 1
• 2) 1/3 ⋅ x³ - 1/2 ⋅ x² + 1
• 3) -1/3 ⋅ x³ + 1/2 ⋅ x² + 1
• 4) 2x + 1
109. При каком положительном значении параметра t прямые, заданные уравнениями 3tx - 8y +1 = 0 и (1 + t)x - 2ty = 0, параллельны?
Тип ответа: Одиночный выбор
• 2
• 3
• 2/3
• 3/2
110. Раскройте определитель |(a, b), (b, a)|
Тип ответа: Одиночный выбор
• (a + b)^2
• (a - b^)2
• a^2 + b^2
• (a + b)(a - b)
111. Расширенная матрица системы {2x + 3y - 5 = 0; -x + 4y = z; x - y + 2z = 1 имеет вид …
Тип ответа: Одиночный выбор
• 1) ((2, 3, 0), (−1, 4, −1), (1, --1, 2))│((5), (0), (1))
• 2) ((2, 3, −5), (−1, 4, 0), (1, −1, 2))│((0), (1), (1))
• 3) ((2, 3, −5), (−1, 4, −1), (1, −1, 2))│((0), (0), (1))
• 4) ((2, 3, 0), (−1, 4, 0), (1, −1, −1))│((5), (1), (−2))
112. Решение, полученное из общего при конкретных значениях произвольных постоянных, называется …
Тип ответа: Одиночный выбор
• частным решением
• единичным решением
• множественным решением
• универсальным решением
113. Решите матричное уравнение AX + AXA = B, где A = ((1, 2), (0, 3)); B = ((4, 8), (6, 6))
Тип ответа: Одиночный выбор
• 1) ((0, 1), (1, 1))
• 2) ((0, -1), (1, 0))
• 3) ((0, 1), (-1, 0))
• 4) ((0, 1), (1, 0))
114. С помощью метода Крамера (определителей) можно найти решение …
Тип ответа: Одиночный выбор
• любой системы линейных алгебраических уравнений
• системы линейных алгебраических уравнений с невырожденной матрицей
• системы линейных алгебраических уравнений с вырожденной матрицей
• системы однородных уравнений
115. Система линейных уравнений называется совместной, если она …
Тип ответа: Одиночный выбор
• имеет только нулевое решение
• не имеет решений
• имеет только одно решение
• имеет хотя бы одно решение
116. Скалярным произведением двух векторов называется …
Тип ответа: Одиночный выбор
• 1) число, определяемое по формуле a ⋅ b = |a| ⋅ |b|
• 2) число, определяемое по формуле a ⋅ b = |a| ⋅ |b| ⋅ sinφ
• 3) число, определяемое по формуле a ⋅ b = |a| ⋅ |b| ⋅ cosφ
117. Смешанной периодической является дробь …
Тип ответа: Одиночный выбор
• 7,(3)
• 8,(11)
• 3,14
• 2,75(12)
118. Составьте уравнение плоскости, зная, что точка А(1, -1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.
Тип ответа: Одиночный выбор
• x-y+3z-11=0
• -x+y+3z-11=0
• x-y-3z+11=0
• x-y+11z-3=0
119. Среди перечисленных дифференциальных уравнений укажите однородное уравнение
Тип ответа: Одиночный выбор
• 1) x²y\' = xy + y²
• 2) 2xy\' = y² - x
• 3) ax\'\' = y\'
• 4) y\' + y = e⁻ˣ / (1 - x)
120. Среди перечисленных дифференциальных уравнений укажите уравнение Бернулли
Тип ответа: Одиночный выбор
• 1) y\' + y / (x + 2) = 2
• 2) y\' + y / x = sinx / x
• 3) y\' + y² / x
• 4) y\' + y / x = e ⋅ y / x

СКАЧАТЬ
 
engineerklubДата: Понедельник, 07.08.2023, 17:05 | Сообщение # 8
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
121. Укажите канонические уравнения прямой {x + 3y - 5z - 7 = 0; 2x - 3y + 3z + 4 = 0
Тип ответа: Одиночный выбор
• 1) (x − 1) / −6 = (y − 2) / −13 = z / −9
• 2) (x − 1) / 24 = (y − 2) / 7 = z / 3
• 3) (x + 1) / −6 = (y + 2) / −13 = z / −9
• 4) (x − 1) / −6 = (y − 2) / 13 = z / −9
122. Укажите каноническое уравнение эллипса, расстояние между фокусами которого равно 8, а малая полуось b = 3
Тип ответа: Одиночный выбор
• 1) x²/9 + y²/25 = 1
• 2) x²/5 + y²/3 = 1
• 3) x²/25 - y²/9 = 1
• 4) x²/25 + y²/9 = 1
123. Укажите натуральный ряд чисел
Тип ответа: Одиночный выбор
• -1, -2, -3, -4, -5, -6, -7, -8, -9
• ..., -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, …
• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, …
• 1, 2, 3, 4, 5, 6, 7, 8, 9, …
124. Укажите уравнение окружности радиуса R = 8 с центром в точке C(2; -5)
Тип ответа: Одиночный выбор
• (x - 2)^2 + (y + 5)^2 = 8^2
• (x + 2)^2 - (y + 5)^2 = 8^2
• (x + 2)^2 + (y - 5)^2 = 8^2
• (x - 2)^2 - (y + 5)^2 = 8^2
125. Укажите уравнение окружности, для которой точки А(3; 2) и В(-1; 6) являются концами одного из диаметров
Тип ответа: Одиночный выбор
• (x - 1)^2 - (y + 4)^2 = 8
• (x - 1)^2 + (y - 4)^2 = 8
• (x - 1)^2 - (y + 4)^2 = 64
• (x - 1)^2 + (y - 4)^2 = 16
126. Укажите уравнение окружности, которая проходит через точку А(2; 6) и центр которой совпадает с точкой C(-1; 2)
Тип ответа: Одиночный выбор
• (x+1)^2+(y-2)^2=25
• (x-1)^2-(y+2)^2=5
• (x-1)^2+(y+2)^2=25
• (x+1)^2+(y-2)^2=36
127. Укажите уравнение окружности, которая проходит через точку А(3;1), а ее центр лежит на прямой 3x - y - 2 = 0
Тип ответа: Одиночный выбор
• (x- 2)^2 + (y - 4)^2 = 16
• (x - 2)^2- (y+ 4)^2 = 5
• (x - 2)^2 - (y + 4)^2 = 10
• (x - 2)^2 + (y - 4)^2 = 10
128. Укажите уравнение окружности, проходящей через точку (4; 5), с центром в точке (1; -3)
Тип ответа: Одиночный выбор
• (x - 4)^2 + (y - 5)^2 =49
• (x - 1)^2 + (y+ 3)^2 = 7
• (x - 1)^2+ (y+ 3)^2 = 49
• (x - 1)^2 + (y + 3)^2 = 73
129. Укажите уравнение окружности, центр которой совпадает с началом координат, а прямая 3x - 4y + 20 = 0 является касательной к окружности
Тип ответа: Одиночный выбор
• x^2+y^2=16
• x^2+y^2=8
• x^2+y^2=9
• x^2-y^2=16
130. Укажите уравнение параболы с вершиной в точке O и фокусом F(4; 0)
Тип ответа: Одиночный выбор
• y^2=16x
• x^2=16y
• y^2=8x
• y^2=4x
131. Упростите выражение 5 / (1 + 4/x) ⋅ ((x - 4) / (x² + 4x) - 16 / (16 - x²))
Тип ответа: Одиночный выбор
• 1) 5 / (x + 4)
• 2) 4x / (x + 4)
• 3) 4x / (x - 4)
• 4) 5 / (x - 4)
132. Упростите иррациональное выражение √((-22)²)
Тип ответа: Одиночный выбор
• 22
• -22
• √22
• -√22

СКАЧАТЬ
 
engineerklubДата: Понедельник, 07.08.2023, 17:05 | Сообщение # 9
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Репутация: 0
Статус: Offline
133. Уравнение 3x - 4y + 12 = 0 преобразуйте к уравнению в отрезках
Тип ответа: Одиночный выбор
• 1) x/4 - y/3 = 1
• 2) x/-4 - y/3 = 1
• 3) x/4 + y/3 = 1
• 4) x/-4 + y/3 = 1
134. Уравнение y + xy’ -2 = 0 является …
Тип ответа: Одиночный выбор
• дифференциальным уравнением Бернулли
• линейным неоднородным дифференциальным уравнением второго порядка с постоянными коэффициентами
• линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами
• дифференциальным уравнением с разделяющимися переменными
135. Уравнение y” - 4y = ex является …
Тип ответа: Одиночный выбор
• дифференциальным уравнением Бернулли
• линейным неоднородным дифференциальным уравнением второго порядка с постоянными коэффициентами
• линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами
• дифференциальным уравнением с разделяющимися переменными
136. Уравнение y” - y’ - 3y = 0 является …
Тип ответа: Одиночный выбор
• дифференциальным уравнением Бернулли
• линейным неоднородным дифференциальным уравнением второго порядка с постоянными коэффициентами
• линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами
• дифференциальным уравнением с разделяющимися переменными
137. Установите взаимное расположение прямых (x - 2) / 4 = (y + 1) / -3 = (z - 1) / -2 и (x - 7) / 5 = (y - 1) / 6 = (z - 3) / 1
Тип ответа: Одиночный выбор
• прямые пересекаются, но не перпендикулярны
• прямые скрещиваются
• прямые параллельны
• прямые перпендикулярны
138. Целыми называются …
Тип ответа: Одиночный выбор
• только положительные числа
• только натуральные числа и числа, противоположные натуральным
• натуральные числа; числа, противоположные натуральным; число 0
• числа, оканчивающиеся на 0
139. Число f(x0) называется наибольшим значением функции на отрезке [a;b], если …
Тип ответа: Одиночный выбор
• 1) для всех x из этого отрезка выполняется неравенство f(x)=f(x₀)
• 2) для всех x из этого отрезка выполняется неравенство f(x)≥f(x₀)
• 3) для всех x из этого отрезка выполняется неравенство f(x)≤f(x₀)

СКАЧАТЬ
 
  • Страница 1 из 1
  • 1
Поиск:

Рейтинг@Mail.ru