Вычислительная математика. вариант 4
|
|
engineerklub | Дата: Четверг, 24.08.2023, 05:42 | Сообщение # 1 |
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Статус: Offline
| Вычислительная математика. вариант 4
Тип работы: Работа Лабораторная Сдано в учебном заведении: ДО СИБГУТИ
Описание: Лабораторная работа №1 Линейная интерполяция Присылаемый на проверку архив должен содержать 2 файла: файл отчета, содержащий титульный лист, условие задачи, результаты аналитических расчетов, формулы используемых методов, исходный текст программы (с указанием языка реализации) и результаты работы программы (можно в виде скриншотов); файл с исходным текстом программы (программу можно писать на любом языке программирования). Задание на лабораторную работу 1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки. 2. Написать программу, которая а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции); б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ; в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения функции). В качестве функции взять N – последняя цифра пароля.
СКАЧАТЬ
|
|
| |
engineerklub | Дата: Четверг, 24.08.2023, 05:43 | Сообщение # 2 |
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Статус: Offline
| Тип работы: Работа Лабораторная Сдано в учебном заведении: ДО СИБГУТИ
Описание: Приближенное решение систем линейных уравнений Присылаемый на проверку архив должен содержать 2 файла: файл отчета, содержащий титульный лист, условие задачи, результаты аналитических расчетов, формулы используемых методов, исходный текст программы (с указанием языка реализации) и результаты работы программы (можно в виде скриншотов); файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу 1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы). 2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной. 3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной. 4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы. где с=0.01N , N– последняя цифра пароля
СКАЧАТЬ
|
|
| |
engineerklub | Дата: Четверг, 24.08.2023, 05:43 | Сообщение # 3 |
Генералиссимус
Группа: Администраторы
Сообщений: 29644
Статус: Offline
| Тип работы: Работа Лабораторная Сдано в учебном заведении: ДО СИБГУТИ
Описание: Численное дифференцирование Присылаемый на проверку архив должен содержать 2 файла: файл отчета, содержащий титульный лист, условие задачи, результаты аналитических расчетов, формулы используемых методов, исходный текст программы (с указанием языка реализации) и результаты работы программы (можно в виде скриншотов); файл с исходным текстом программы (программу можно писать на любом языке программирования). Задание на лабораторную работу 1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения f ( x ) по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001. 2. Найти погрешность, с которой можно найти f ( x ) с вычисленным в пункте a) оптимальным шагом. 3. Написать программу, которая а) выводит таблицу значений функции с рассчитанным оптимальным шагом h на интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции); б) По составленной таблице вычисляет приближенные значения f x ( ) в точках , 0,1,2, ,15 i x c ih i по формуле центральной разностной производной; в) выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения производной). В качестве функции взять f(x)=1/c Sin cx, где c=5
СКАЧАТЬ
|
|
| |